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FOREWORD

Dr. Gabor Milics, PhD, Conference Chair

July 03, 2021, Hungarian Society of Precision Agriculture, Budapest, Hungary

Dear Reader,

In 2017, at the 11th European Conference on Precision Agriculture (Edinburgh), 
the ECPA conference organizing committee decided that the right of organizing 
the next conferences will be 2019 SupAgro (Montpellier, France) and 2021 
Hungarian Society of Precision Agriculture (Budapest Hungary).  

Without being superstitious, the number “13” did not look good! However, at 
that time, we never thought about what difficulties would face us in the form 
of a pandemic by 2021. We had to make very difficult decision on risking the 
organization in the middle of lockdown, postponing the conference or going to 
on-line. None of the solutions would be acceptable individually, so we decided 
to have a hybrid event: the first ECPA organized with the possibility to attend in 
person or join the conference on-line.  

The organizers met challenges in every aspect of the preparatory work. However, in 
spite of all the uncertainties, we sincerely hope that the 13th European Conference 
on Precision Agriculture will result in a profitable meeting – attending in-person, 
or on-line – for everyone and will provide new information and solutions for the 
challenges that agricultural practice is facing.

We are grateful to the International Society of Precision Agriculture (ISPA) for 
support in communicating the conference news to the members of the Society. 
The Hungarian Society of Precision Agriculture and the Organizing team would 
especially like to thank and congratulate Dr. John V. Stafford, the editor of the 
proceedings, for the enormous work he has done for the conference during the last 
couple of months sometimes with very tight schedule and very close deadlines. In 
addition, the organizers would like to thank all members of the conference Scientific 
Committee: for the International Committee for their invaluable contribution in 
supporting the editor and assuring the scientific quality of the communications 
presented at this conference and the Local Scientific Committee for the help in 
organizing the program.



We appreciate the financial contribution of all the sponsors of the 13th ECPA 
conference, and would like to highlight the support from the Ministry of 
Agriculture, Hungary and would like to especially thank Dr. István Nagy, Minister 
for Agriculture, Hungary for being the patron of the conference. We would like 
to express our gratitude to all the authors – without whom there would be no 
conference - and attendees. At the time of writing this foreword (early July 2021), 
we already know the poster session can only be organized in the on-line space 
of the 13th ECPA conference. In spite of the fact that poster presenters will be 
attending on-line, we hope they will follow the conference and prepare their 
papers for the next conference, when we can all meet in person!

Finally, as Chair I am grateful to all the conference Organizing Committee for 
their support, and hard work over the past two years – some have been involved 
in the process for even longer time – in bidding for and delivering this conference. 
Preparation for the technical tour takes a long time and requires extra effort from 
the host farm – KEVE Zrt. – and the cooperating partners, making possible to show 
PA practices in Hungary. Very special thanks go to the technical tour organizing 
team! Generally, without the great conference and technical tour organizing team 
- I had the chance to work with - it would be impossible to do this fantastic work!

We – The 13th ECPA Organizing Committee – are both honoured and delighted 
to have worked for you and to have helped in showing “Adoption of innovative 
precision agriculture technologies and solutions” series of ECPA conferences. 

Have a great Conference! 

Sikeres konferenciát!

Gabor



More information: www.ecpa2021.hu
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ESTIMATION OF THE IMPORTANCE OF BIOTIC AND ABIOTIC VARIABLES FOR 
THE DETECTION OF CERCOSPORA - LEAF SPOT DISEASE BASED ON OPTICAL 
SENSORS
Ispizua Yamati F. R., Barreto A. Bömer J., Streit S., Paulus S., Mahlein A-K.
Institute of Sugar Beet Research (IfZ), Göttingen, Germany 

Sugar beet is the only crop that produces high-quality sugar under a temperate climate, 
making it the essential sugar source in Europe. Plant diseases are one main limitation to yield 
development. In sugar beet, one of the most destructive foliar diseases is Cercospora Leaf spot 
(CLS) disease caused by Cercospora beticola Sacc. Early and accurate detection is essential to 
avoid yield losses and evaluate the necessity of a fungicide application.
Interaction between plant and pathogen and symptom development leads to changes in the 
reflection properties of above-ground plant organs. The combination of optical sensors with 
machine learning techniques has shown high capabilities to improve the detection and monitoring 
of plant disease in crop production. However, weather conditions and environmental factors 
and their interaction strongly impact disease spreading and development. For CLS, the main 
spreading occurs through conidiospores, primarily by wind and splashing water (Lawrence, 
1970). The conidia production is also affected by two main parameters, temperature and relative 
humidity (Bleiholder & Weltzien, 1971; Bleiholder & Weltzien, 1972). The aforementioned 
factors combined with the morphological characteristics of the plant need to be considered to 
approach an early and accurate detection of diseases. This work aims to determine which of 
the biotic and environmental factors are of great importance in predicting disease severity and 
making technological progress in predicting and monitoring CLS in sugar beet fields.
In 2020, a field trial was conducted near Göttingen, Germany, to investigate the pathogen’s 
spread and its interaction with the environment. Immediately after sowing, some experimental 
field areas were inoculated with C. beticola to simulate an infection. Georeferenced IoT 
microclimate sensors were installed to quantify temperature and humidity around the field. 
After that, growing degree days (GDD, base temperature = 1.1 °C) and the number of possible 
generations (Bleiholder & Weltzien, 1971) were calculated. In addition, multispectral images 
(blue, green, red, red edge, and near-infrared and long-wave infrared) were taken weekly from 
sowing to harvest with a multispectral camera mounted on an unmanned aerial vehicle. At the 
same time, a visual assessment of the respective disease severity (DS) was carried out to serve 
as reference data.  
After preprocessing multispectral images, different values derived from the digital elevation 
model have been calculated, such as plant height, aspect, slope, watersheds and drainage basins, 
surface roughness, and the topographic convergence index. Additionally, several vegetation 
indices were calculated. The optimized soil adjusted vegetation index (OSAVI) presented the 
highest correlation with DS. Variables with low variance have been removed before being 
introduced into the model.
A gradient boosting algorithm was implemented to determine which are the most critical 
variables, and a SHAP (Shapley additive explanations, Liu et al 2020) for the ten most important 
variables were generated to facilitate interpretation.
As shown in Figure 1, the variable that contributes most to the detection was the OSAVI, the 
lower the index values, the higher the importance. In contrast, in the second place, are the GDD 
that the more advanced it is, the more influence the model has. In the third and fourth place 
are the red spectral band and plant height, respectively. The lower they are, the more effect and 
variation on the DS they have.
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Figure 1: SHAP summary plot of the ten most important features for the gradient boosting 
algorithm for every sample, showing the impact of each feature on the model output. The y-axis 
indicates the variable in order of importance. OSAVI= Optimized soil adjusted vegetation 
index, LWIR= Long-wave Infrared, RED= Red band (668 nm center, 14 nm bandwidth), RED 
EDGE= Red edge band (717 nm center, 12 nm bandwidth).

The study successfully achieved the integration of sensor data with environmental data. 
The findings underline the importance of considering biotic and environmental factors to 
understand better the plant’s response to disease infection. Furthermore, they highlight the need 
for measuring the heterogeneity of additional experimental parameters like soil, climate and 
cultivar.
Research results as provided by this study allow us to advance in the early detection of diseases. 
In addition, they enable reduction of computation time of models by discarding variables that 
are highly correlated with each other or that contribute poorly to the models’ accuracy.
 
Bleiholder, H.; Weltzien, H. C. 1971: Beiträge zur Epidemiologie von Cercospora beticola  
 Sacc. (Contributions to the epidemiology of Cercospora beticola Sacc.) in Zuckerrübe.  
 In: Journal of Phytopathology 72 (4), S. 344–353. DOI: 10.1111/j.1439- 
 0434.1971.tb03207.x. 
Bleiholder, H.; Weltzien, H. C. (1972): Beiträge zur Epidemiologie von Cercospora beticola  
 Sacc. (Contributions to the epidemiology of Cercospora beticola Sacc.)  in Zuckerrübe.  
 In: Journal of Phytopathology 73 (1), S. 46–68. DOI: 10.1111/j.1439- 
 0434.1972.tb02524.x. 
Lawrence, J. S. 1970: Wind dispersal of conidia of Cercospora beticola. In: Phytopathology 60  
 (7), S. 1076. DOI: 10.1094/Phyto-60-1076.
Liu, Y., Just, A. 2020. SHAPforxgboost: SHAP Plots for ‘XGBoost.’ R package version 0.1.0.

the red spectral band and plant height, respectively. The lower they are, the more effect and 
variation on the DS they have. 
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IDENTIFYING AFLATOXIN CONTAMINATION RISK ZONES WITHIN FIELDS 
FOR PRECISION MANAGEMENT
R. Kerry1, B. Ingram2, B. Ortiz3, D. Damianidis3, H. Stone3

1Brigham Young University, UT, USA, 2Universidad de Talca, Curico, Chile, 3Auburn  
University, AL, USA
ruth_kerry@byu.edu

Background: Aflatoxin is a mycotoxin produced by Aspergillus fungi which can contaminate 
corn. It can cause liver cancer so there are legislative limits on the levels allowed in grain. 
Levels are measured at harvest and the whole crop accepted or rejected based on the average 
concentration. Reducing the amount of the crop rejected during high-risk years could be 
achieved by identifying zones within fields with different contamination risk. Zones could 
have differential planting and irrigation rates to reduce risk and could be harvested and stored 
separately to avoid rejection of the whole crop.
Contamination is primarily driven by high temperatures and drought conditions, during the mid-
silk growth stage (June). Greater contamination risk within fields is likely in areas with light-
textured soil, shedding topographic positions and aspects with greatest evapo-transpiration. As 
these are relatively permanent features of fields, the patterns of contamination risk are likely 
to be stable in time. Determining aflatoxin contamination levels of grain samples is expensive. 
Field observations were made in one high risk season (2010) and free remotely sensed (2006-
2011), elevation and soil survey data were used to determine risks zones and if they were likely 
to be stable in time.

Methods: Total Aflatoxin concentrations (ppb) were measured in two non-irrigated corn fields 
in Southeast Alabama, USA. Each 13 ha field was divided into zones based on soil type and 
elevation and two locations within each zone were assessed for Aflatoxin with three replicates 
measured at each location. Minimum, maximum and mean Aflatoxin values on a 30 m grid 
were kriged from these values. Top- (0-30 cm) and sub-soil (40-100 cm) volumetric water 
content (VWC) and leaf chlorophyll (SPAD) were measured and kriged to a 30 m grid. Soil type 
was extracted from a soil survey map. Elevation data (30 m) was used to calculate modified 
catchment area (MCA) (Figure 1). LandSat 5 NDVI (30 m pixels) and thermal IR data from 
all cloud-free dates in the 2006 to 2011 growing seasons were extracted. The drought risk 
associated with each month and year was determined relative to 30 year normal average 
maximum monthly temperatures and precipitation totals for the nearest weather station. 
Correlations between field and sensed data were examined. Best Subset regression was done 
with min., mean and max. Aflatoxin as dependent variables and June/July 2010 imagery, soil 
survey, elevation and field data as potential independent variables. Log NDVI and thermal IR 
data were used for bivariate local Moran’s I (B_LMI) analysis. Imagery data were classified 
into two zones by K-means and the % agreement between classifications based on Aflatoxin 
values and imagery was determined.

Results: There were obvious correlations between Aflatoxin and elevation, topsoil VWC, MCA 
and these are strongest for min. and mean Aflatoxin (Figure 1). Thermal data was more strongly 
correlated with Aflatoxin than NDVI. The imagery data with largest correlations to Aflatoxin 
occurred when there was drought early in the growing season. The R2 value for regression with 
max. Aflatoxin was larger than min. and mean Aflatoxin. Regression suggested that soil type 
was important for predicting Aflatoxin.
B_LMI analysis showed a significant cluster with low NDVI and high Thermal values each 
year (2006-2011) which corresponded to two soil series with the highest Aflatoxin values and 
formed the high-risk class (Figure 1 i). 

mailto:ruth_kerry%40byu.edu?subject=
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of points which identified the low-risk zone (Figure 1 i). Comparison tests showed expected 
significant differences in Aflatoxin, top-soil VWC and 75% of imagery data between these 
three risk zones. Two class K-means classifications of imagery (2006-2011) showed 27-83% 
agreement for min., 42-86% for mean and 44-79% for max. Aflatoxin values. Classifications 
from imagery in months with the most droughty weather conditions showed the highest 
percentage agreements with Aflatoxin classifications.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Pixel maps (30m) of (a) minimum, (b) mean, (c) maximum kriged aflatoxin, (d) 
elevation, (e) Top-soil VWC for 21 July 2010, (f) crop SPAD measurements for 21 July 2010, 
(g) NDVI 28 May 2008, (h) Thermal IR 27 June 2007 and (i) risk zones. Black line=soil type 
 
Conclusions: The consistent spatial patterns in imagery over time (2006-2011) and associated 
with drought suggest the stability of Aflatoxin risk zones in time. This work suggested that 
elevation and soil type may be sufficient to define zones in other fields. For 2010 (a high-risk 
year), only the low-risk zone had values below the 100 ppb FDA aflatoxin limit and most of 
that zone exceeded the FDA 20 ppb limit. This suggests that irrigation or planting of resistant 
varieties should be practiced in this field.  

(a)	Minimum	Aflatoxin	Values	(ppb)	 (b)	Mean	Aflatoxin	Values	(ppb)	 (c)	Maximum	Aflatoxin	Values	(ppb)	

	 	 	

(d)	Elevation	(m)	 (e)	Top-soil	VWC	–	7/21/10	 (f)	SPAD	–	7/21/10	

	 	 	
(g)	NDVI	05/28/2008	 (h)	Thermal	IR	6/27/2007	 (i)	Risk	Zone	
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Figure 1: Pixel maps (30m) of (a) minimum, (b) mean, (c) maximum kriged aflatoxin,  
(d) elevation, (e) Top-soil VWC for 7/21/10, (f) crop SPAD measurements for 7/21/10, (g) 
NDVI 05/28/2008, (h) Thermal IR 6/27/2007 and (i) risk zones. Black line=soil type

The three regression plots showed two distinct groups of points which identified the low-risk 
zone (Figure 1 i). Comparison tests showed expected significant differences in Aflatoxin, 
top-soil VWC and 75% of imagery data between these three risk zones. Two class K-means 
classifications of imagery (2006-2011) showed 27-83% agreement for min., 42-86% for 
mean and 44-79% for max. Aflatoxin values. Classifications from imagery in months with the 
most droughty weather conditions showed the highest percentage agreements with Aflatoxin 
classifications.

Conclusions: The consistent spatial patterns in imagery over time (2006-2011) and associated 
with drought suggest the stability of Aflatoxin risk zones in time. This work suggested that 
elevation and soil type may be sufficient to define zones in other fields. For 2010 (a high-risk 
year), only the low-risk zone had values below the 100 ppb FDA aflatoxin limit and most of 
that zone exceeded the FDA 20 ppb limit. This suggests that irrigation or planting of resistant 
varieties should be practiced in this field. 
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SPECTRAL ASSESSMENT OF CHICKPEA MORPHO-PHYSIOLOGICAL TRAITS 
FROM SPACE, AIR AND GROUND 
Sadeh R.1, Avneri A.1, Tubul Y.1, Lati N. R.2, Abbo S.1, Bonfil J. D.3, Peleg Z.1, Herrmann I.1 
1The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of 
Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel, 
2Agricultural Research Organization (ARO), Newe Ya’ar Research Center, Israel, 
3Agricultural Research Organization (ARO), Gilat Research Center, Israel 

 
Chickpea (Cicer arietinum) is an important grain legume in semi-arid regions and water-
stress is a major constraint to its productivity.  Area under chickpea cultivation is growing 
but climate change toward greater aridity results in higher precipitation instability and risks 
yields.  The ability to assess water potential can support irrigation decisions.  Thus, 
improved ability to spatially assess plants water status can promote more efficient 
irrigation.  The current study aims to assess plant water status, leaf area index and grain 
yield by spaceborne, airborne and ground spectral sensors.  Field experiments were 
conducted in two locations, representing different climatic conditions in Israel.  Five 
irrigation regimes were applied: 50%, 75%, 100%, 120% and 140% of Penman-Monteith 
evapotranspiration were implemented at the Gilat research station and in a commercial field 
(Kibbutz Or-HaNer).  Plants were characterized weekly for morpho-physiological traits and 
grain yield data was obtained at the final harvest.  Canopy reflectance was acquired with a 
MicroSatellite VENµS (11 spectral bands, 420-910 nm), a drone mounted Rededge 
MicaSense camera (5 spectral bands, 470-860 nm; only in Gilat) as well as field 
spectrometer dual-field of view system at ground level (ASD, 350-2500 nm).  The 
multispectral images as well as hyperspectral data were pre-processed to the level of 
reflectance.  The VENµS and ground level hyperspectral data were divided to calibration 
and validation data sets while the multispectral 5 bands imagery was analyzed only for 
calibration data set.  Morpho-physiological traits and grain yield values were showing 
differences between most of the irrigation regimes.  The spectral data acquired from 
spaceborne, airborne and ground sensors were capturing the variability in canopy reflected 
resulted from the irrigation regimes.  The VENµS, 5 bands airborne imagery and 
hyperspectral ground level data are useful for distinguishing chickpea plant status and 
evaluation of morpho-physiological traits.  
 

 

Figure 1: Canopy ground level hyperspectral reflectance in Gilat of the irrigation regimes, 95 
days after emergence (21 days after implementation of irrigation regimes)  

SPECTRAL ASSESSMENT OF CHICKPEA MORPHO-PHYSIOLOGICAL TRAITS
FROM SPACE, AIR AND GROUND
Sadeh R.1, Avneri A.1, Tubul Y.1, Lati N. R.2, Abbo S.1, Bonfil J. D.3, Peleg Z.1, Herrmann I.1

1The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of  
Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel, 
2Agricultural Research Organization (ARO), Newe Ya’ar Research Center, Israel,  
3Agricultural Research Organization (ARO), Gilat Research Center, Israel

Chickpea (Cicer arietinum) is an important grain legume in semi-arid regions and water-stress 
is a major constraint to its productivity. Area under chickpea cultivation is growing but climate 
change toward greater aridity results in higher precipitation instability and risks yields. The 
ability to assess water potential can support irrigation decisions. Thus, improved ability to spa- 
tially assess plants water status can promote more efficient irrigation. The current study aims 
to assess plant water status, leaf area index and grain yield by spaceborne, airborne and ground 
spectral sensors. Field experiments were conducted in two locations, representing different 
climatic conditions in Israel. Five irrigation regimes were applied: 50%, 75%, 100%, 120% 
and 140% of Penman-Monteith evapotranspiration were implemented at the Gilat research 
sta- tion and in a commercial field (Kibbutz Or-HaNer). Plants were characterized weekly 
for morpho-physiological traits and grain yield data was obtained at the final harvest. Canopy  
reflectance was acquired with a MicroSatellite VENµS (11 spectral bands, 420-910 nm), a 
drone mounted Rededge MicaSense camera (5 spectral bands, 470-860 nm; only in Gilat) as 
well as field spectrometer dual-field of view system at ground level (ASD, 350-2500 nm). 
The mul- tispectral images as well as hyperspectral data were pre-processed to the level of 
reflectance. The VENµS and ground level hyperspectral data were divided to calibration and 
validation data sets while the multispectral 5 bands imagery was analyzed only for calibration 
data set. Morpho-physiological traits and grain yield values were showing differences between 
most of the irrigation regimes. The spectral data acquired from spaceborne, airborne and ground 
sensors were capturing the variability in canopy reflected resulted from the irrigation regimes. 
The VENµS, 5 bands airborne imagery and hyperspectral ground level data are useful for 
distinguishing chickpea plant status and evaluation of morpho-physiological traits.

Figure 1: Canopy ground level hyperspectral reflectance in Gilat of the irrigation regimes,  
95 days after emergence (21 days after implementation of irrigation regimes)
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INTRODUCTION
Estimation of plant canopy volume is an important task for horticultural crop growers who aim 
to adapt the concept of precision agriculture to the production processes in fruit production. 
Plant volume information supports growers in two ways, i) it helps to understand the growth 
dynamics and ii) it provides the basis for calculating precisely the amount of inputs e.g., fertilizer 
application, plant protection and thinning spraying, irrigation etc. that can be applied at variable 
rate adjusted to each individual fruit tree. Technological development of mainly optical sensors 
can assist to obtain precise plant information remotely. Particularly light detection and ranging 
(LiDAR) sensors can provide three-dimensional (3D) plant information as point cloud (Tsoulias 
et al. 2020). In recent years, LiDAR has been employed by agricultural researchers in horticulture 
(Underwood et al. 2016) and forestry researchers (Yan et al. 2019) for the estimation of tree 
canopy volume. Most of the approaches that have been reported referred to tree crops but a few 
limited research works have been found on small horticultural plants, for example strawberry 
(Fragaria × ananassa) which is a perennial herb plant. In this study, a comparative assessment 
was carried out for different volume estimation approaches utilizing temporal strawberry point 
cloud data acquired with a linear conveyor mounted LiDAR scanner.

MATERIALS AND METHODS
For this study, strawberry (Fragaria × ananassa) plants (n=4) of a commercial cultivar ‘Honeoye’ 
were planted at 2-3 leaves stage (BBCH 13) in the experimental station of Leibniz Institute 
for Agricultural Engineering and Bio-economy (ATB) located in Marquardt, Germany. Each 
strawberry plant was planted in separate containers, while a 2D LiDAR laser scanner (LMS511 
pro model, Sick, Germany) was used to scan the plants. The LiDAR was mounted on a movable 
linear conveyor system (Module 115/42, IEF Werner, Germany) with maximum length of 
800 mm. The conveyor system was operated by a servo positioning controller (LV-servoTEC 
S2, IEF Werner, Germany) and S2 Commander software (version 4.1.4201.1.1, IEF Werner, 
Germany). The linear conveyor system consisted of a tooth-belt carrier which can run vibration 
free at variable speed with ±0.05 mm accuracy. The LiDAR measurement and reference data 
collection were carried out in 2-3 week interval for 12 weeks. LiDAR scanning was performed 
from two opposite sides at 1 m distance between sensor and plant center. 3D point clouds of two 
opposite sides of each plant were processed using own Python code. The outliers were filtered 
using a sparse outlier removal technique. Both point clouds were aligned and merged to get the 
strawberry plant point clouds. Reference data captured plant canopy volume, measuring width 
and height of the plants and considering cylindrical shape. For estimation of canopy volume 
from a 3D point cloud, three approaches were implemented: (i) convex hull, (ii) segmented 
convex hull, and (iii) slicing-volume estimation. The first two approaches have been described 
by Auat Cheein et al. (2015) for orchard trees. In the third approach, canopy volume was 
calculated by segmenting the plant point cloud into a number of horizontal point cloud slices 
of equal thickness (1 mm). Each point cloud slice of the strawberry canopy was analysed by 
determining the boundary polygon. The area of the boundary was calculated for each slice 
and multiplied by its height achieving the volume estimation of each slice, whereas the sum 
provided the plant volume.
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polygon. The area of the boundary was calculated for each slice and multiplied by its height 
achieving the volume estimation of each slice, whereas the sum provided the plant volume. 
 
RESULTS 
The volume estimation approaches were applied to the temporal strawberry point cloud 
dataset and found largest volumes for convex hull, followed by segmented convex hull and 
slicing-volume estimation method. It can be assumed that the cylindrical approach for 
determining the reference volume produces a bias, since the the method considers plants as a 
cylinder, regardless of the irregular shape of the canopy. At first measuring date, average 
canopy volumes were found to be 8994 cm3, 5741 cm3, 2984 cm3 and 320 cm3 for cylindrical, 
convex hull, segmented convex hull and slicing-volume estimation methods, respectively. 
After 12 weeks, the volume of the same strawberry plants was enhanced to 10515 cm3, 7347 
cm3, 4480 cm3 and 352 cm3 for cylindrical, convex hull, segmented convex hull and slicing-
volume estimation methods, respectively. The results showed a gradual increase in volume, 
which was non-invasively and repeatably obtained by analysing temporal LiDAR point cloud 
data. Also, it was revealed that slicing-volume estimation can removes the volumes associated 
with gaps and holes in the strawberry canopies. Finally, LiDAR-estimated strawberry canopy 
volume information can be utilized for application of plant inputs. 

  
Figure 1: 3D point cloud of strawberry plant eight weeks after planting. 
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INTRODUCTION
In fruit trees, the characterization of canopy geometric features can provide indicators for the 
tree growth, fruit quality and yield. Among others, leaf area (LA) is one of the most important 
geometrical parameters due to the indirect relation with crop load and fruit size. The LA can be 
determined manually. However, the method is laborious, costly and destructive. Compared to 
arable crops, development of perennial fruit trees takes place in three dimensions (3D) and may 
adapt to the growing location (Zude-Sasse et al., 2016). In recent years, the assessment of canopy 
geometry of tree crops has been facilitated through the development of light detection and 
ranging (LiDAR) sensors mounted frequently on terrestrial platforms to produce the 3D point 
cloud of trees. Several studies have exploited the potential of LiDAR systems to extract LA and 
volume from a 3D point cloud at one growth stage (Sanz et al., 2018) and during seasonal tree 
development (Chakraborty et al., 2019). However, the utilization of such systems for estimating 
the LA usually includes points from woody parts, resulting in an overestimation of LA values. 
The objective of this study was to propose a methodology of detecting and segmenting wood 
points from an apple tree point cloud to improve the estimation of LA.

MATERIALS AND METHODS
The experiment was conducted in 12 trees of a commercial apple orchard (3 ha), Brandenburg, 
Germany, in 2020. The orchard was planted in 4 x 1 m distance with Malus x domestica ‘Gala’ 
strain ‘Baigent’ (Brookfield®). A LiDAR scanner with real time kinematic global navigation 
satellite system to geo-reference the data and inertial measurement unit to acquire orientation 
of the scanner were mounted on a tractor to scan the three-dimensional tree point cloud 5 days 
after full bloom (DAFB5) and at cell division 38 DAFB (DAFB38). A metal frame mounted on 
a tractor was used to carry the sensors along the tree rows. In both stages, trees (n = 12) were 
defoliated to build a regression equation of the laser hits per tree and LA. Also, the lengths 
of all shoots and stem were measured. A cylindrical boundary was projected around the stem 
position of tree point cloud, aiming at the initial segmentation of the tree point cloud. The soil 
was removed using random sample consensus algorithm, considering only points above 0.2 m 
in the analysis.The geometric feature of linearity (L) and apparent reflectance intensity (RToF) 
derived from a 3D point cloud were used to extract points of woody parts from points per tree 
(PPT) of each segmented apple tree for both growth stages (Tsoulias et al., 2020). For this 
purpose, k-nearest neighbour classification method was performed on each segmented tree to 
analyse the local neighborhood of points in 3D. Linearity and reflectance thresholds of wood 
points were determined based on defoliated tree at DAFB5. The wood clusters in foliated trees 
were validated by the defoliated trees, which were considered as ground truth labels.

RESULTS
The probability density patterns of RToF for wood ranged between 35 % and 70 % at DAFB5, 
while a broader range was observed at DAFB38. The most frequent (mode) value appeared at 
62 % and 40 % in 2018 and 2019, respectively. The probability density patterns of L for wood 
were partly overlapped in both seasons, revealing a similar mode value at 51 % and 47 % in 
DAFB5 and DAFB38, respectively. Mode values of RToF and L were applied as thresholds to 
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62 % and 40 % in 2018 and 2019, respectively. The probability density patterns of L for wood 
were partly overlapped in both seasons, revealing a similar mode value at 51 % and 47 % in 
DAFB5 and DAFB38, respectively. Mode values of RToF and L were applied as thresholds to 
segment points belonging to woody parts of the canopy of each tree. Consequently, the LA 
estimation of all trees was done after filtering points representing wood surfaces (Figure 1). 
The remaining points per tree were related with the manually measured LA, indicating a R2 = 
0.83 at DAFB5 and R2 = 0.86 at DAFB38. On the other hand, the length of stem was correlated 
with the manual measurements at DAFB5 (R2 = 0.90) and DAFB38 (R2 = 0.85). The algorithm 
resulted in maximum values of 82.5 % precision, 85.7 % of accuracy, 87 % recall and 86.3 % 
F1 score at DAFB5, Whereas, less pronounced values of precision (79.5 %), accuracy (83.2 
%), recall (82.5 %)  and  F1 score (80.9 %) were indicated in DAFB38.  
 

 

Figure 1.  3D point cloud of apple trees at DAFB38, when mature canopies appeared.  
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INTRODUCTION
On-ground assessment of geometrical features of vineyards is of vital importance to generate 
valuable information that can enable producers to take the optimum actions in terms of 
agricultural management. RGB cameras are considered the most common optical sensors in plant 
reconstruction for agricultural purposes. They have been widely used to evaluate phenotypic 
traits. RGB cameras in combination with software recognition are able to differentiate other 
vegetation from vineyard crops and specific parameters, such as grapes or stress factors, e.g., 
diseases. The information obtained can be used for extracting different vegetation indices 
and the creation of 3D models. A vineyard color model could describe micro-crop structure, 
if images are acquired at a very close range to the plants. If the assessment is based on an 
unmanned aerial vehicle, the 3D model can describe the macro-structure. Within RGB systems, 
depth cameras (RGB-D) such as the Microsoft Kinect sensor (Redmond, WA, USA) have been 
applied to precision agriculture purposes (Andujar et al., 2019). The Kinect v2 is a commercial 
videogame controller device for the Xbox game console. However, its use has been extended to 
many experiments or automatic platforms to apply its functioning principle to a wide array of 
fields beyond video gaming. The system has demonstrated its capability to scan and reconstruct 
3D models of vineyards on large areas, at different times of the year and under uncontrolled 
daytime light, on board of an automatic platform (Bengochea-Guevara, et al. 2018). The 
creation of 3D models of branches is of crucial importance for further management planning. 
Volume and structural information can improve pruning systems, which can increase crop 
yield and improve crop management. In this experiment, a self-developed platform was used 
to reconstruct 3D models which were used to determine branch volume on several vineyard-
cropping systems. The results were compared with dry biomass ground truth-values.

MATERIALS AND METHODS
A non-destructive measuring technique was implemented to assess major geometrical traits of 
vines, based on measurements recorded by an RGB-D camera mounted on a mobile platform 
(Figure 1). It was intended to evaluate the performance of RGB-D cameras as a reliable 
system to reconstruct 3D architecture of vines, in regard to different pruning practices. Field 
measurements were made in January 2020 using a mobile platform equipped with the Kinect 
v2 commercial sensor. The vehicle was driven in a straight line, parallel to the vine row. The 
Kinect v2 sensor was placed on a height-adjustable bar in front of the platform oriented to the 
crop. The sampling platform was driven at a constant speed of 3 km h-1. Afterwards, 3D clouds 
were processed and filtered to create a solid volume. The algorithm reconstructs large regions 
using the fusion of different overlapped depth images. It stores information only on the voxels 
closest to the detected object (Curless and Levoy, 1996). This information is used to estimate 
the position and orientation of the camera while scanning. A ray is directed from the camera 
for each pixel of the input depth image to define the voxels in the 3D scene that cross each ray. 
For 3D model creation, a modified version of the iterative closest point (ICP) algorithm (Chen 
and Medioni 1992) was set up to estimate the position and orientation of the Kinect v2 sensor.
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Figure 1. (a) Electric mobile platform comprising Kinect v2 sensor. (b) RGB section of the 
crop. (c)  Depth image of the crop 

 

RESULTS 

For this study, different types of training systems which correspond to different forms of 
pruning were assessed. Vines were placed with an approximate spacing of 1 m between plants 
and 2 m of inter-row distance. The Kinect v2 system on-board the on-ground vehicle was 
capable of producing precise 3D point clouds of the evaluated pruning systems: Guyot 
unilateral, Cordon Royat, Pergola, Cortina, Smart Dyson, Long GDC, Scott, T-Trellis, 
Minimum, Govelet and vertical. Correlations of Kinect-based branch volume against pruning 
weight (dry biomass) resulted in high coefficients of determination (R2=0.85 to R2=0.7) for 
narrow pruning systems, while the higher volume pruning system showed lower 
determination coefficients. The Kinect v2 has high potential as a 3D sensor in agricultural 
applications for proximal sensing operations, benefiting from its high frame rate, low price in 
comparison with other depth cameras and high robustness. 
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POSTER ABSTRACT
Vineyard yield has a high temporal and spatial variability, making it hard for vine growers 
to predict the amount of fruit at harvest. A timely and accurate yield estimation is extremely 
valuable for the entire grape and wine production chain as it provides several logistic and 
management advantages. At farm level, vineyard yield estimation is mainly performed through 
laborious and often inaccurate methods that involve destructive bunch sampling. Recently, 
automatic fruit recognition through image analysis has been successfully explored on grapevine 
images. However, these methods rely on bunch exposure to the camera, which depends on 
canopy density at cluster zone. Thus, a great part of previous research work involves the 
artificial defoliation of vines to increase fruit visibility prior to image collection. The aim of our 
work is to explore the relationship between empty spaces in the canopy at fruit zone (canopy 
porosity – POR) and the percentage of visible bunch area (pvBA) to estimate the fraction of 
occluded bunches in full canopy grapevine images. The present work is an update on the models 
previously developed in Victorino et al. (2019).

An experiment was set with the white cv. ‘Arinto’, trained to a vertical shoot positioned trellis 
system. Data was collected near harvest from 2019 season in an experimental vineyard located 
in Lisbon, Portugal. Images were collected from vines with different defoliation intensities, to 
simulate a wide range of vegetative vigor and senescence. POR pixels were extracted along 
with visible bunch pixels (vBA) and were then combined into the variable GPOR (GPOR = 
(PORpixels + vBApixels) / totalpixels). vBA was converted into pvBA using the total bunch pixels 
(tBA) obtained from the same vines, after being fully defoliated. A regression model was fitted 
to estimate pvBA using GPOR as the independent variable (Fig. 1).
Finally, tBA was computed using the estimated pvBA and original vBA, according to the 
equation 1: tBAest = vBA + vBA   (1-pvBA).

 

Figure 1: Polynomial regression of pvBA over GPOR, with respective equation and resulting 
R2, fitted with the training set (n = 86) [left]. Table 1: statistical metrics for model validation 
(calculated on an independent validation set, n = 34). Metrics calculated according to Wallach 
et al. (2006) [right].
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occluded bunches in full canopy grapevine images. The present work is an update on the models 
previously developed in Victorino et al. (2019). 

An experiment was set with the white cv. ‘Arinto’, trained to a vertical shoot positioned trellis 
system. Data was collected near harvest from 2019 season in an experimental vineyard located 
in Lisbon, Portugal. Images were collected from vines with different defoliation intensities, to 
simulate a wide range of vegetative vigor and senescence. POR pixels were extracted along 
with visible bunch pixels (vBA) and were then combined into the variable GPOR (GPOR = 
(PORpixels + vBApixels) / totalpixels). vBA was converted into pvBA using the total bunch pixels 
(tBA) obtained from the same vines, after being fully defoliated. A regression model was fitted 
to estimate pvBA using GPOR as the independent variable (Fig. 1).  
Finally, tBA was computed using the estimated pvBA and original vBA, according to the 
equation 1: tBAest = vBA + vBA × (1-pvBA). 

 
Figure 1. Polynomial regression of pvBA over GPOR, with respective equation and resulting R2, fitted 
with the training set (n = 86) [left]. Table 1: statistical metrics for model validation (calculated on an 
independent validation set, n = 34). Metrics calculated according to Wallach et al. (2006) [right]. 
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Figure 2: Comparison between estimated and actual tBA on the validation set.

In natural conditions, leaves occluded an average of 67.2% of the total bunch projected area. 
The regression model presented a high and significant R2 showing that GPOR can effectively 
explain a high portion of pvBA variability (fig. 1), slightly higher than if only POR was used. 
Model validation with an independent dataset (n = 34) showed a very low underestimation 
tendency of the model (negative bias), with a MA%E close to zero and a RMSE of 8.3 pvBA.

Total estimated bunch area, including occluded bunches, was calculated using equation 1. The 
actual accumulated tBA of the 34 vines, after being converted to m2, was 29.9 m2, while the 
estimated one was 31.3 m2, resulting in a final relative error of 4.7%, 7% lower than when using 
POR exclusively. Visual observation of the individual cases shows a good relationship between 
estimated and actual values (fig. 2).

Our results indicate that canopy porosity presents promising results towards estimating the 
percentage of bunches that are occluded by leaves in different scenarios of vegetative vigor. 
This approach is even more effective when the initial visible bunch area is also considered as 
a canopy blank space. Work is currently ongoing towards improving the models with other 
image-based variables and generalizing this methodology to other cvs. and vineyard conditions.

Key words: canopy porosity; grapevine; hidden fruits; vineyard yield estimation; proximal 
sensing
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ABSTRACT
Pests and diseases such as spider mite and downy mildew severely affect grapevines. Fast 
and objective methods for their detection in commercial vineyards are needed. In this work, 
hyperspectral imaging, computer vision and machine learning were used to detect spider mite 
and downy mildew symptoms in grapevine leaves. An accuracy of 93.2% and an F1-score of 
0.92 were obtained in the classification of leaf disks using a model trained with support vector 
machines. This work holds out the possibility of using non-invasive technology and machine 
learning for the detection of diseases and pests in viticulture.

INTRODUCTION
Pests and diseases have a high impact on yield and grape quality in viticulture (Galet, 1996), 
and their identification is time-consuming and requires trained personnel. New non-invasive 
sensing technologies and artificial intelligence could be used for pest and disease detection in 
grapevine (Cruz et al., 2019; Zhu et al., 2020). The aim of this work was to use hyperspectral 
imaging, computer vision and machine learning for automatic detection of spider mite (pest) 
and downy mildew (disease) symptoms in commercial vineyards.

MATERIALS AND METHODS
Grapevine leaves infected with spider mite (Eotetranychus carpini) and downy mildew 
(Plasmopara viticola) and non-infected leaves were collected in a commercial vineyard (V L. 
cv. Hondarribi Zuri Zerratia) located in northern Spain. Hyperspectral images of leaf disks 
were taken under laboratory conditions with the Resonon Pika L VNIR camera, capturing the 
visible and near-infrared (VNIR, 400-1000 nm) range.
Image processing was carried out to obtain a representative spectrum from each disk using 
computer vision techniques and machine learning (Figure 1). First, hyperspectral images 
(Figure 1A) were pre-processed using reflectance transformation, Savitzky-Golay filtering 
and Z-score normalization. Then, leaf disk spectrums were separated from the background 
spectrums classifying spectrums of each image with a support vector machine (SVM) model 
(Figure 1B). Then, from the binary images (the result of classifying between leaf spectrum and 
non-leaf spectrum), erosion and dilation morphological transformations were applied to remove 
small holes and smooth the borders of the disks. Finally, the watershed segmentation algorithm 
(Vincent & Soille, 1991) was applied to separate the disks in each image (Figure 1C).
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Figure 1. (A) Example of original image, (B), leaf separation from 
background with an SVM model and (C) leaf disk location with 

watershed. 
 
The average spectrum of each leaf disk were classified into disks with downy mildew 
symptoms, with spider mite symptoms or healthy using a different SVM model. Stratified 5-
fold cross-validation was applied and accuracy and F1-score metrics were used to analyze the 
results. 
 
Results and Discussion  
An accuracy of 93.2% and an F1-score of 0.92 were obtained in the classification of leaf disks 
with spider mite symptoms, with downy mildew symptoms and without symptoms. This 
considerable accuracy demonstrates the capability of the trained model for the automated 
downy mildew and spider mite detection and their differentiation in grapevine. The results 
show that hyperspectral imaging and artificial intelligence can be used for identifying key 
diseases and pests in phytopathology and crop protection. This work opens the window for the 
application of non-invasive techniques and machine learning for disease and pest detection 
and differentiation in commercial vineyards. 
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Figure 1. (A) Example of original image, (B), leaf separation from background with an SVM 
model and (C) leaf disk location with watershed.

The average spectrum of each leaf disk were classified into disks with downy mildew symptoms, 
with spider mite symptoms or healthy using a different SVM model. Stratified 5-fold cross-
validation was applied and accuracy and F1-score metrics were used to analyze the results.

RESULTS AND DISCUSSION
An accuracy of 93.2% and an F1-score of 0.92 were obtained in the classification of leaf 
disks with spider mite symptoms, with downy mildew symptoms and without symptoms. This 
considerable accuracy demonstrates the capability of the trained model for the automated downy 
mildew and spider mite detection and their differentiation in grapevine. The results show that 
hyperspectral imaging and artificial intelligence can be used for identifying key diseases and 
pests in phytopathology and crop protection. This work opens the window for the application of 
non-invasive techniques and machine learning for disease and pest detection and differentiation 
in commercial vineyards.
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ABSTRACT
Downy mildew is a key disease in grapevine and its detection in commercial vineyards is 
needed. Artificial intelligence could help to achieve automated and accurate detection of this 
disease. In this work, computer vision and deep learning techniques were applied to detect 
downy mildew on grapevine leaves under field conditions. An accuracy of 91.4% was obtained 
using a convolutional neural network. Promising results are shown in the use of non-invasive 
technologies and convolutional neural networks for disease detection in viticulture.

INTRODUCTION
Downy mildew is a very relevant disease in many commercial crops as it can cause a serious 
impact to yield (Martínez-Bracero et al., 2019). Currently, disease detection and monitoring 
are time-consuming and require trained personnel. Deep learning and computer vision are used 
for disease and pest detection in agriculture (Barbedo & Garcia, 2019; Chen et al., 2020), and 
this opens a window for its application in the automated detection of downy mildew. This 
work aimed to automatically detect downy mildew symptoms in grapevine leaves under field 
conditions using computer vision and deep learning.

MATERIALS AND METHODS
RGB images of grapevine canopy with and without symptoms of downy mildew (Plasmopara 
viticola) were taken in a commercial vineyard (Vitis vinifera L. cv. Hondarribi Zuri Zerratia) 
located in northern Spain. RGB images were manually taken under natural daylight conditions 
using a Canon EOS 5D Mark IV digital camera.
Computer vision techniques were used to remove the background from images and to highlight 
the visual features of symptoms (Figure 1). Grabcut segmentation method (Rother et al., 2004) 
was used to remove the background of the images. The number of images for classification 
was increased using data augmentation to train more robust classification models, creating 
new images from the originals by changing brightness, height and width shifts, horizontal and 
vertical flips, and small rotations. Leaf zones that could potentially represent downy mildew 
symptoms were highlighted using the HSV (Hue, Saturation, Value) colour space, considering 
only pixels with yellowish or reddish colours.
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Figure 21: Diagram of the steps followed in this work. Grapevine leaf images with and 
without downy mildew symptoms were acquired. Data were prepared by background 
removal, data augmentation and hue threshold. Classification of data was made with a 
convolutional neural network (CNN).

Leaf images were classified into infected and non-infected classes using a CNN model. Hold-
out validation was employed for the analysis of the classification results, using accuracy as 
metric.

RESULTS AND DISCUSSION
An accuracy of 91.4% was obtained in the hold-out validation. The results prove the efficiency 
of the trained model in the detection of downy mildew symptoms in grapevine leaves. Computer 
vision techniques were useful for feature extraction from images, standing out the relevant 
pixels of the images. On the other hand, deep learning helps to create a robust model capable 
of providing a fast and accurate classification of downy mildew symptoms in commercial 
vineyards. This work demonstrates the usefulness of non-invasive technologies and artificial 
intelligence for disease detection in plants under field conditions.
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Accurate high-resolution yield maps are necessary to identify spatial yield variability patterns 
within commercial fields, determine the key factors affecting yield and finally provide insights 
for management practice in precision agriculture. However, existing systems for monitoring 
potato yield can easily lead to improper interpretation of on-farm yield variability. The main 
reasons lie in procedures for data collection and processing, such as improper calibration settings 
in harvest sensor, incomplete separation of attached soil and potatoes, errors in operation of 
harvest sensor and data processing/cleaning. To produce accurate and reliable potato yield 
maps, alternative technologies need to be developed.  

Remote sensing technology has been extensively applied for in-season crop health monitoring 
(e.g., leaf area index, biomass, diseases/pests) and yield prediction (Miao and Mulla 2016). 
Generally, vegetation indices calculated from remote sensing images are used to correlate to yield 
variability through statistical and machine learning models. Previous potato yield prediction 
studies with remote sensing have indicated that the methodology is effective for crop yield 
prediction and pattern analysis (Gómez et al. 2019; Newton et al. 2018). Particularly, multiple 
temporal remote sensing monitoring across the growing season can uniquely offer insights into 
tuber development processes and identify the limiting factors such as soil-landscape conditions, 
water and nutrient management.

PlanetScope (Planet Team, 2018) is a newly available commercial cube satellite platform that 
offers daily multispectral imagery for any location in the world. Approximately 130 Planet Labs 
Dove cube satellite sensors have been launched into sun-synchronous low earth orbit. This orbit 
path and inclination allow for daily revisit time of any point on earth between 9:30 and 11:30 
AM solar time. The satellite data contains four bands (blue: 455–515 nm; green: 500–590 nm; 
red: 590–670; and near-infrared (NIR): 780–860 nm). The spatial resolution is about 3m. Little 
has been reported for potato yield mapping using PlanetScope satellite images. Therefore, the 
objective of this study was to evaluate the potential of using PlatetScope satellite images for 
predicting potato yield.

In the current study, a commercial potato field near Becker, MN, USA was selected as an 
experimental site. To better select the most representative sites for spatial yield variability 
for ground sampling and validation, the conditional Latin hypercube sampling (cLHS) by 
integrating all features of environment, agronomy and remote sensing monitoring was used 
to select 50 ground-truth sampling sites for yield measurement in the potato field. Total potato 
tubers from five hills were collected at each site by hand digging and weighed at the end of the 
sampling day. The yield was calculated based on 3 m within-row hill spacing and 0.9 m row 
spacing. In-season PlanetScope images were obtained six times during crop growth dates in 2020 
(i.e., June 25, June 27, July 12, July 24, August 4 and August 11). Several vegetation indices 
were calculated, including green normalized difference vegetation index (GNDVI), normalized 
difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI) and modified 
simple ratio (MSR). In addition to multiple linear regression (MLR) models, prediction models 
were constructed using two machine learning algorithms (random forest, RF; and support 
vector machine, SVM) to predict potato yield (Zha et al. 2020). The RF and SVM models 
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were developed using the statistical software R (4.0.4) packages, “caret” and “randomForest.” 
The agreement between the observed and the predicted potato yield was evaluated using the 
coefficient of determination (R2) and root-mean-square error (RMSE) in prediction. The models 
with the largest R2 and lowest RMSE in prediction were recognized.    

Potato tuber yield varied across the field from 33 to 105 t ha-1. Preliminary results indicated that 
multiple linear regression using all VIs from different dates achieved the highest R2 (=0.70), 
while sub-setting data into training (70%) and testing (30%) datasets resulted in the highest 
adjusted R2 (=0.53). More analyses are being performed to use machine learning models to 
improve potato yield prediction and will be presented in the poster. 
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INTRODUCTION
Remote sensing of fruit trees is frequently carried out by means of various platforms. The 
selection of the platform depends mainly on the measuring time interval required by the 
application (Zude-Sasse et al., 2016). Most frequently, a tractor is used for carrying the sensor 
along the tree rows. However, the tractor’s combustion engine, elevation of terrain, and 
roughness of the ground may cause vibration and displacement of the sensor (Janeway, 1975). 
Displacement of the sensor can seldom be avoided with an active platform, but can be commonly 
corrected by means of a global navigation satellite system (GNSS) and inertial measurement 
unit (IMU). Effects of high frequency vibration on the sensor signal is usually ignored. For 
scientific purposes, it is desirable to obtain sensor data with reduced forced vibration from the 
platform, which was approached by developing a sensor platform for autonomous monitoring 
of fruit trees.

MATERIAL AND METHODS
 A circular conveyor was developed, employing electrical engine working with 50 Hz (DRN71, 
SEW Eurodrive, Germany) and stainless steel chain with mechanical suspensions for various 
plant sensors (Fig. 1). This phenotyping platform was established in an experimental apple 
orchard in temperate climate, in 2020. The conveyor system enables automated monitoring of 
111 apple trees (Malus x domestica Borkh. ‘Gala’ and ‘JonaPrince’) and pollinator trees planted 
in one row of 84 m length. In the trial, an inertial measuring unit (IMU), containing gyroscope 
and accelerometer, was employed (MTi-G-710, XSens, Enschedde, Netherlands). The angular 
vibration was resolved in yaw, pitch and roll.
Conveyor data were compared to acceleration and vibration measured when the sensors were 
placed on a tractor (LSA 209P, Fendt, Marktoberdorf,Germany). The conveyor chain can move 
in a range of 1 – 7 m min-1; in the experiment, similar velocity was adjusted to 7 min min-1. 
Both systems were run on the same row of apple trees.

RESULTS AND DISCUSSION
Tractor low frequency vibration (0 – 20 Hz) occurs mainly vertically and can be attributed to 
rough ground, while high frequency vibration is caused by the combustion engine and the mass 
asymmetries (Loutridis et al., 2010). When the IMU was mounted on the tractor, the variance 
of angular vibration, measured in parallel to the tree row with 1.6 m distance to the trees was 
12.780°, 0.875°, and 0.375° for yaw, roll and pitch, respectively. The values are consistent 
with data described in the literature. Variance of GNSS data was 16.36*10-5°, 15.40*10-6°, 
32.50*10-2° considering latitude, longitude, altitude, respectively. 
In comparison, at the stationary conveyor measured with the same geometry to the trees, marginal 
variance of sensor displacement was found with 1.195°, 0.533° and 0.080° for yaw, roll and 
pitch angles, respectively (Fig. 1b). Particularly the movement around yaw axis was marginal 
at the conveyor compared to tractor displacement, but also roll and pitch variance decreased 
at the conveyor. GNSS variance was reduced for lat. = 16.03*10-5°, long. = 14.40*10-6°, and 
enhanced for alt. = 35*10-2° compared to tractor data.
Concluding, plant sensor data, e.g. from laser scanner or camera system, can be obtained with 
enhanced quality at the conveyor. The marginal displacement combined with the automated 
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occurring when moving plant sensors along the crop on an unmanned or conventional vehicle 
in real-world application, and, therefore, to obtain plant input data for the development of 
robust agronomic models. 
 

             

 
Figure 1. Schematic of circular conveyor section (upper) and variance of angular 
displacement measured at tractor and conveyor. 
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recording of sensor data should be useful for reducing the measuring uncertainties potentially 
occurring when moving plant sensors along the crop on an unmanned or conventional vehicle in 
real-world application, and, therefore, to obtain plant input data for the development of robust 
agronomic models.

             
 
Figure 1: Schematic of circular conveyor section (upper) and variance of angular displacement 
measured at tractor and conveyor.
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BACKGROUND
Optimisation of agricultural monitoring and subsequent decision making is essential for precision 
agriculture. This is of particular importance for accurate biomass estimations that can help in 
grassland management, for example, in defining the optimal mowing time. Recent research 
(Borra-Serrano et al., 2019; Aper et al., 2019) advanced on the UAV-based non-destructive 
herbage yield predictions in perennial ryegrass (Lolium perenne L.). This study follows up on 
those procedures and seeks to evaluate and compare the biomass predictor potential of spectral 
bands and vegetation indices (VIs) derived from a ten-band multispectral (MS) camera. 

MATERIALS AND METHODS
The experimental site located in Merelbeke (Belgium) comprises both diploid and tetraploid 
trials of perennial ryegrass. More than 200 varieties and populations were tested in two replicates 
(468 plots of 7.8 m2 each). Biomass samples were collected on 21 and 22 September 2020 (cut 
4) with a plot harvester (Haldrup F-55, Haldrup, Denmark). On 15 September, a UAV flight 
with a multispectral sensor (Dual Camera System, Micasense, USA) was carried out at an 
altitude of 30 m and 80% front and side overlap. The images obtained were processed with 
Pix4D Mapper 4.5.6 (Pix4D, Switzerland). In this study, dry matter yield (DMY) was predicted 
using two sets of variables: one on the spectral bands as such, and one on derived VIs. The MS 
sensor utilised comprised ten bands: coastal blue (444 nm), blue (475 nm), green (531 nm), 
green (560 nm), red (650 nm), red (668 nm), red edge (705 nm), red edge (717 nm), red edge 
(740 nm) and NIR (842 nm). A variety of VIs were derived using these calibrated reflectance 
bands, including NDVI, GNDVI, WDRVI, SAVI, MSAVI2, PVI, EVI, GARI, MCARI, PRI, 
CLg and SR described in more detail by Xue & Su (2017). Median and interquartile range (IQR) 
values were then extracted from the selected variables with the v.rast.stats tool (QGIS 3.12.3 
with GRASS 7.8.3. software) for each plot. Prediction models were built with the Random 
Forest (RF) algorithm within the mlr package using RStudio v1.3.1093 (RStudio: IDE for R, R 
Studio Inc., USA). Model performance was assessed using the repeated nested cross-validation 
loop (with a total of 50 iterations). Accuracies were quantified and compared using relative root 
mean square error values (rRMSE). 

RESULTS AND DISCUSSION
The measured DMY was 1697 kg ha-1 with an SD of 376 kg ha-1 and a minimum and maximum 
of 785 kg ha-1 and 2687 kg ha-1, respectively. Median spectral signatures extracted from two 
selected plots (both diploid genotypes) with different DMY production (Figure 1A) showed 
differences, especially in the red edge and the near-infrared (NIR) region. In this example, the 
plot with higher DMY shows higher reflectance in this part of the spectrum. Pearson correlation 
coefficients between DMY and red edge740 (PCC = 0.31) and NIR842 (PCC = 0.43) were the 
highest among tested bands (Figure 1B). 
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Figure 1. Comparison of (A) spectral signatures between two selected plots with different dry matter yield 

(DMY) production, (B) Pearson Correlation Coefficients (PCC) between tested spectral bands and DMY, (C) 
model accuracy boxplots for spectral-based predictor variables (bands and VIs). 

 
Preliminary analysis of the model performance assessment (Figure 1C) showed that mean 
rRMSE for a dataset based on the spectral bands (13.1%) or VIs (12.8%) provided 
comparable results, with VIs obtaining slightly better average estimates. In terms of error 
distribution (i.e. precision), the standard deviation (SD) accounts for 1.7% and 1.4% for bands 
and VIs, respectively. The advantage of using vegetation indices in remote sensing 
applications and vegetation monitoring over spectral bands lies in their interpretability.   
 
CONCLUSIONS 
In general, this study has demonstrated the efficiency of the multispectral bands and 
vegetation indices in predicting ryegrass yield in the autumn cut. Presented findings 
complement those of earlier studies. Future research will focus on the applicability and 
performance of the model on the entire growing season, i.e. multiple cuts per year. 
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Water scarcity will become a fundamental problem that will trigger changes in agricultural 
cultivation and management practices especially in arid and semi-arid conditions (Falkenmark 
2013; Nagy et al., 2018). The trend of annual precipitation is still very uncertain in Hungary, 
the frequency of drought has already increased significantly strongly due to rising temperatures, 
and decrease in precipitation in the vegetation periods (Tamás et al., 2015; Juhász et al., 2020). 
Beside water retention measures, the above needs can only be met in a sustainable way with 
water and energy-saving irrigation, which presupposes different innovative irrigation solutions, 
especially in the Central European region. Groundwater, which is predominant in arid areas 
that are low in surface waters, is the source of irrigation water for central pivot equipment (Sui 
& Yan, 2017), while in this semi-arid/semi-humid region, surface water is protected to supply 
linear pivots. Several experiments have been made worldwide to evaluate the efficiency of 
variable rate irrigation (VRI), and investigate its impact on yield and soil. Based on vegetation 
status, management zones can be created, which can be effective in water control. The aim 
of the research was to develop a combined traffic control for water-saving precision sprinkler 
irrigation system on arable land (85 ha), which is located in the reference area of the Tisza 
Riven Basin. During the research, a real-time eco-potential measurement methodology for water 
management was developed for water-saving precision sprinkler irrigation system located in 
South-East Nyírség, Szabolcs-Szatmár-Bereg county in the North-Eastern region of Hungary. 
A Reinke 2060 PL irrigation machine with a total structural length of 209.09 m was installed in 
the field. The type of nozzle used is NELSON R3000, which is equipped with 100 kPa pressure 
regulators and is located at a height of 2.1 m from the ground. Pivoting operation and VRI 
operation in linear mode can be distinguished.

The precision grid-based soil sampling was carried out on an agricultural field. Different 
databases and maps were used to elaborate the soil sampling strategy. Core soil samples in two 
layers (30 cm and 60 cm) were taken. On the arable land analysed, 102 points were modelled, 
representing more than 1 sample per hectare (1.19 samples/ha), from a total of 510 samples. 
The texture and soil water retention parameters were measured to determine soil density, total 
available water content, gravitational water content. Soil chemical properties were also measured 
and were examined in the Laboratory of Soils of the University of Debrecen, Institute of Water 
and Environment Management. After laboratory testing, high precision soil maps and a 3-D 
model of deep root zone were created to support the establishing of a water saving variable rate 
irrigation system by selecting and identifying sites for different agro-technical implementations 
and precision management zones.

Irrigation water calculations for traffic control were based on total available water content. 
In general, it is advisable to start irrigation when the total available water content (TAW) is 
dropped to 60% (depletion rate 40%), so it was calculated with this value when calculating the 
actual moisture content. In order to calculate the amount of irrigation water, it is necessary to 
know the water loss in addition to the thickness of the layer to be irrigated. The water loss can 
be calculated based on the field capacity, the actual moisture content and the water content at 
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can be calculated based on the field capacity, the actual moisture content and the water 
content at wilting point. Total available water content of the upper layer has a minimum value 
of 4.01 % and maximum of 25.85 % and with mean values of 11.14 % with a standard 
deviation of 4.12 % in the deeper layer. Lower values of available water content were also 
noted, the minimum was 1.95 % with a maximum of 15.94 % and mean values were 10.78 % 
with a standard deviation of 4.55 %. Based on the depletion rate and TAW, the amount of 
water loss was calculated expressed in a volumetric %, which had to be converted to mm. 
Since 1 V/V% means 1 mm moisture in a 10 cm thick layer, the numerical value of 
volumetric water content% also gives the moisture content stored in 10 cm thick layer in mm, 
i.e.: 1 tf% = 1mm/10 cm. The same relation can be used if the amount of irrigation water is to 
be calculated in mm. Based on this, the percentage distribution of water was determined for 
application in creating VRI zones (Figure 1).  
 

 
 
Figure 1. Available water content at 30cm depth and VRI based traffic control on the basis of 
TAW (yellow arrows are the directions of the run of irrigation machine) 
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Smart farming appears as a new opportunity to tackle European agriculture challenges. For 
decades, N fertilization methods endeavored to explicitly define features of soil supply and crop 
demand at the field scale. Poor nitrogen use efficiency (NUE) observed in crop production in 
western Europe proved the proposed methods to be unsuitable to accurately manage nitrogen 
(Zhang et al., 2015). An interesting method firstly developed by Blackmore (2000) and 
implemented by Basso et al. (2007) delineates management zones from spatial and temporal 
analysis of yield maps. In this method, fields are divided into high and stable yield zones, low 
and stable yield and unstable yielding zones. Each zone can be managed following specific 
approaches designed to maximize NUE. Evaluated on corn and soybean, the method has 
shown promising benefit to improve NUE compared to actual practices at the scale of USA 
(Basso et al. 2019). To the author’s knowledge, such a program has not been conducted yet 
to develop nitrogen (N) management methods; its potential benefit must be demonstrated on 
winter wheat production in the European context where N management practices slightly differ. 
In the western European context, access to yield maps on a broad scale is constrained by yield 
monitor adoption (Lachia 2020). A body of literature has evaluated the relationship between 
yield and vegetation indices (VI) calculated from remote sensing devices (Diacono et al. 2013). 
Recently, Toscano et al. (2019) analyzed the relationship between yield distribution and in-field 
VI variations obtained through satellite images. Significant correlation has been found on wheat 
in different contexts, but no specific period had been identified to better correlate during the 
growing period. This result questions the possibility of delineating management zones applying 
Blackmore’s methodology to vegetation indices sensed at specific periods.
To retrieve yield distribution in the present study and delineate management zones, different 
vegetation indices (VI) were calculated with Sentinel-2 data and tested through the period from 
stem elongation (Z30 on Zadock’s scale) to late flowering (Z69). Only images with cloud cover 
lower than 30% were selected. Two fields (F1, F2) situated in northern France with respective 
surfaces of 10.9 ha and 6.3 ha have been specifically analyzed on three years of history, from 
2016. Two other fields in the same area, for which data are only available in 2020, have also 
been studied (surfaces of 11.6 and 8.9 ha). Yield maps were cleaned beforehand according to 
the method proposed by Lyle et al. 2014. Blackmore’s method of delineation applied to the 
fields only included wheat and barley as these two crops supposed a closer resulting interaction 
to pedoclimatic context than e.g., rapeseed or potatoes (Bjarne & Steffen, 2003). Besides the 
NDVI, different VI were calculated according to their robustness in high levels of biomass 
(MSR), their weak sensitivity to chlorophyll concentration variations or to soil disturbance 
(MCARI2, MTVI2) (Haboudane, 2004). The Spearman correlation between theses indices and 
yield distribution has been calculated at each sensing date available during the above-mentioned 
period, each year. Correlation is considered significant when 95 % confidence interval excludes 
zero. To apply Blackmore’s delineation method on indices maps, sensitivity of chosen dates has 
been evaluated through different scenarios. Scenarios 1 and 2 calculated management zones 
from images taken in homogeneous periods when correlations are among the highest. Scenario 
3 uses, each year, the highest correlations even if sensing dates are not involved in the same 
period and is used to evaluate previous scenarios. Only dates with significant correlations were 
maintained. These scenarios were then compared to the initial yield map-based delineation.  



34

The matching percentage between indices and yield maps of each zone was calculated to 
evaluate the accuracy of each sensing date scenario.
Delineation of management zones in fields F1 and F2 revealed very limited unstable zones, 
respectively 1.5% and 1% of field F1 and F2 areas. Instability over these fields is more a result 
of yield recording than real yield variations and is considered negligible. Zones corresponding 
to high and stable yield were observed on 53.4% and 47% of F1 and F2 areas whereas low 
and stable yield represent 45.1% and 52% of the fields. NDVI had slightly higher correlations  
(R: 0.38) than the other vegetation indices (R: 0.27) tested on each date and field, except 
MSR. However, NDVI values contrasted more through each period and were retained as VI 
candidate. Among the different sensing dates, 75% led to significant correlation to yield. Two 
periods seem to differentiate with higher correlations: 1st half of April and 2nd half of May with 
respective mean correlations of 0.34 and 0.43 calculated on the four fields and the period from 
2016. Whatever the scenario considered, prediction potential of NDVI on management zone 
delineation reached 45%. This low value can be explained by different factors. Local yield 
variability is observed on every yield map, even after data cleaning. As prediction is calculated 
by pixel with high resolution, this variability limits its accuracy. Even if a trend between yield 
distribution and NDVI distribution exists, it would be interesting to investigate distribution of 
NDVI by ranges of yield values to explore sensitivity of the index.
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Most existing crop models are “point-based models” (Heuvelink et al., 2010). Spatialization 
is the application of point-based models spatially across an area to apply these models to new 
scenarios without fundamentally changing the underlying model. Spatialization of crop models 
is of interest to the agricultural community as predictive crop modelling, particularly short to 
medium term predictions at field or subfield scales, is becoming an important part of modern 
site-specific management. The difference between a spatializing crop model and a spatial crop 
model is important. Spatialized models do not take into account neighbouring data or effects to 
compute a result at a point (or unit support) (Heuvelink et al., 2010). True spatial models do. 
Model evaluation refers to the question of knowing how close model predictions are to real 
observations, the aim is to ascertain the value of predictions computed by the models. This 
evaluation has to match with the proposed use of the model (Wallach et al., 2014). To evaluate 
if a predictive crop model is a good representation of variables it is supposed to simulate, a very 
common practice is to compare observed data versus simulated data (outputs). It can be in a 
qualitative way with a graph for instance or in a quantitative way by using some statistic that 
measure the distance between observed and simulated data (Wallach et al., 2014). Lots of these 
statistics are used in the literature, the most common are : coefficient of determination (R2), 
Biais, Mean Square Error (MSE), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency 
(NSE) and Willmott index of agreement (D-index). All of these statistics are aspatial. In the case 
where they are applied to a spatialized (or spatial) model, there are no spatial characteristics of 
the model predictions taken into account. Such statistic utilization may affect the evaluation of 
spatialized crop models, particularly when the spatialization of the models is usually dependent 
on the availability of spatially autocorrelated environmental inputs (Zhao et al., 2016). 
Incorporating these data into the model may mean that errors (i.e. difference between observed 
and simulated data) are not independent. Therefore, spatial autocorrelation in the inputs or 
outputs can violate assumptions of many statistical metrics.
To illustrate the issue and the need for new approaches to spatialized crop model evaluation, 
a simple case study is presented. The aim of the case study is to demonstrate the limitation of 
aspatial statistics that have been widely used for the evaluation of spatialized crop models in 
the recent literature. In this case, the RMSE is used as the example statistic as this is the statistic 
most commonly used in studies. In the example, the intent is to define management zones (MZ) 
within a vineyard for the purpose of precision viticulture. The predicted variable that is used 
to define these MZs is predawn leaf water potential (PLWP). The purpose of this example is to 
show that with different theoretical spatial models of PLWP, the outcome of clustering based on 
the PLWP predictions can be variable and independent of the RMSE. 
The simulated example is built on real observed data of PLWPs on a 1.2 ha Shiraz vineyard 
in 2003. This vineyard is located in Pech Rouge (INRAE Gruissan, 43°08’47” N, 03°07’19” 
E). To simulate the output from various potential spatialized crop models, a series of noise 
models were constructed, all following a normal distribution with a fixed mean (0) and variance 
(0.2) but with various levels of spatial structure within the noise models. Two of the noise 
distributions were dependent on the observed PLWP (some spatial structure), while the third 
distribution was random (i.e. independent from observed PLWP). Maps of the original data and 
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third distribution was random (i.e. independent from observed PLWP). Maps of the original 
data and the simulated spatialized models are in Table 1. The original PLWP data were made 
into MZs based on tiertile analysis and the threshold values from this analysis used to create 
the MZs in the simulated PLWP maps. The agreement between the MZ maps was determined 
using the Kappa statistic. 
RMSE is calculated from the simulated PLWP (i.e. sum of observed PLWP and attributed 
noise) and the observed PLWP, and should identify which simulation is better from the 
others. However, because the simulated noise models have the same distribution (but different 
spatial structure), the RMSE in these cases was identical (Table 1). Therefore, the conclusion 
is that all three models were equally good, and the defined MZs should be equally good.  
 
Table 1 : Management Zones (MZ) based on a classification of 3 classes using the observed 
and simulated Predawn Leaf Water Potential (PLWP) models showing the RMSE and 
Cohen’s Kappa value associated with the simulated models. 
 Observed PLWP Simulated PLWP 
   Real Data Model 1                 Model 2                Model 3 

MZ 

    
RMSE  0.16 0.16 0.16 

Cohen’s 
Kappa  0.64 0.05 0.31 

 
The resulting MZ maps for the three models do not support this, nor do the Kappa values. 
Even though the RMSE is constant, the Model 1 spatial pattern was much closer to the 
original data (higher Kappa value) than Model 2 or 3. Model 2 had the least similar spatial 
pattern to the observed data (lowest Kappa value). Thus, even though the RMSE was the same 
on these three simulations, the derived MZs were significantly different between simulations. 
Selecting the best MZ (i.e. from the best spatialized model) cannot be decided with only the 
RMSE.  
If predictive crop modelling using spatialized crop models is to become a common aspect of 
precision agriculture then new methods or statistical metrics that take into account the spatial 
characteristics of the data and models will be needed to evaluate these crop models. 
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AGRO IOT PLATFORMS AND SENSORS IN CROP PRODUCTION 
Ambrus B., Nyéki A. , Teschner G. , Neményi M. , Milics G., Kovács A. J.  
Széchenyi István University, Faculty of Agricultural and Food Sciences, Department of 
Biosystems and Food Engineering, Mosonmagyaróvár,Vár 4., Hungary 
ambrus.balint@sze.hu 
 
This study presents the objectives and the framework of	Agronomic - Internet of Things system 
in Mosonmagyaróvár (M-AIoT), taking place at Széchenyi István University Faculty of 
Agricultural and Food Sciences, such complexity is the first time in Hungary. The core part of 
this activity is automating data collection, extended with remotely-sensed parameters of crops, 
resulting in real-time data from the devices with programmable time sequences.	The structure 
of IoT is based on three layers: the sensing layer, the data transfer layer and the application 
layer.  The M-AIoT system is designed to collect data from a crop field and also from the 
surrounding natural areas. In this case, the relationship between natural ecology and agro-
ecology can be profoundly studied. Complementing M-IoT data with data from UGVs (mobile 
robots), UAVs and satellites, the requirements for sustainable (both environmentally friendly 
and profitable) precision farming can be fulfilled. 
In this study, the different base sets of sensor that were installed to collect data from soil, 
atmosphere, plant and the environment, sampling every 16 minutes were demonstrated. The 
devices werer installed in a 6 ha corn and a 15 ha wheat fields (Fig. 1.). These devices have 
been installed in the crop, on different types of soil (sandy loam, loam, silt loam) in the year 
2019 and 2020 (Nyéki et al, 2020).  
 

 
Figure 1: Position of the sensors in the research fields. 

 
The M-AIoT system integrates commercially available devices such as Libelium (URL1), 
Boreas (URL2), and Campbell Scientific (URL3) sensors and self-developed data collection 
devices. 
The monitoring parameters are: soil electrical conductivity, soil oxygen content, soil 
temperature and moisture at different depths, leaf wetness, air temperature, humidity and 
pressure, and ground water properties. Three sensors have been installed in an artificial water 
pit to detect the pH and the nitrite and nitrate content of the ground water.  The system also 
includes a complex meteorological station. The sensor system also collects and transmit 
parameters from the crop micro-climate (i.e.:	global radiation, rain gauge, wind speed and 
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the crop micro-climate (i.e.: global radiation, rain gauge, wind speed and direction). All the 
measurement units are powered with efficient solar panels, supplying energy even in cloudy 
and short daylight (wintertime) conditions. 
A robotic measuring unit was developed in order to collect further data not collected by the sensor 
system. The applicability of mobile data loggers and installed sensor station were examined in 
this project. The power supply, the failures of communication and the data loss are monitored 
on a self-developed web-based interface. The web-based interface was designed to integrate the 
incoming data from different sensors using dissimilar communication protocols (LoRaWAN, 
GSM). Majority of the online data transmission (90%) is based on LoRaWAN communication 
protocol. The server development was implemented in .NET language. MS SQL database was 
used to store the data collected by the various sensors.
The aim of the IoT-based web interface development was to create a farmer-centric system that 
visually interprets the data, enhancing the useful information for the farmers.
Furthermore, this information is accessible from any platform (i.e. PC or smartphone) allowing 
the research team to automatically obtain data and make decisions in a faster and more efficient 
way. Therefore, a website was developed that already supports useful tools that were developed 
in an angular framework. The web interface is designed to handle the different measuring stations 
from crop fields uniformly. This web-based system can provide a comparative and valuable 
analysis with the experiences and conclusions of the different sensors accuracy and usability in 
the field. Based on experience with the system, the farm advisory extension can be supported. 
The analysis can help the farmers to make better decisions related to field management (e.g. 
optimal time for sowing, optimum nitrogen fertilizer amount and irrigation recommendation). 
Based on the development and measurement results of the project so far, further development 
of the system is needed. During the operation, the reliability of data transmission errors of the 
sensors, the discharge of the battery, the displacement of the soil sensors and wildlife damage 
became problems. According to experience, the functionality of the complex system has to be 
improved by advancing analytical features. Furthermore, it is intended to implement effective 
prediction of sensors database using artificial intelligence. Therefore, farmers will be able to 
manage their field more efficiently.
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In the context of climate change and innovative agroecological practices, it is essential to have 
precise monitoring of crop growth to ensure rapid action in case of problems. Plant growth 
depends on the biomass accumulated by photosynthesis that requires as energy source, 
photosynthetically active radiation (PAR). This variable is essential to study plant phenology 
and for ecophysiological models allowing prediction of biomass with daily determination of 
dry matter accumulated (STICS: Brisson et al., 2003; APSIM: Keating et al., 2003; AZODYN: 
Jeuffroy and Recous, 1999). Thus, because of field microclimate, PAR sensors need to be 
placed close to the field. However, commercial measuring instruments consist of a data logger 
and one or more sensors and are too expensive. In addition, a PAR sensor is rarely installed on 
automatic weather stations. The objective of this study is to propose an innovative device 
development, a low-cost miniaturized solution which is robust and energy autonomous and that 
can easily be moved from one field to another. 
An engineering solution to design, implement and calibrate a PAR measurement device 
(SOLEM PAR/LE) combined with an open-source electronic platform (Arduino) is presented. 
The device is named	PARADe (PAR Acquisition Device). The PAR sensor was calibrated by 
comparison with a calibrated sensor (PQS1 PAR Quantum Sensor, Kipp & Zonen) and an 
industry standard data-logger (CR1000 Campbell Scientific).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. Left: Portable PAR device, Right: Relative error as a function of actual PAR. 
 
The ARDUINO card records the PAR sensor voltage through an AD623 amplification (rail-to-
rail amplifier) every five seconds in its internal memory. After 60 values (i.e. 5 minutes), it 
calculates the average of the voltage values and writes it to the microSD card. The average of 
the 60 measurements is recorded every 5 minutes to reduce the variability from the ARDUINO 
and the sunshine conditions. To make the calibration curve relating the output voltage of the 
PARADe acquisition chain to the radiation, it is necessary to place the calibrated sensor close 
to the sensor to be calibrated (Figure 1, left). To test good repeatability of the device, 
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The ARDUINO card records the PAR sensor voltage through an AD623 amplification (rail-
to-rail amplifier) every five seconds in its internal memory. After 60 values (i.e. 5 minutes), it 
calculates the average of the voltage values and writes it to the microSD card. The average of 
the 60 measurements is recorded every 5 minutes to reduce the variability from the ARDUINO 
and the sunshine conditions. To make the calibration curve relating the output voltage of the 
PARADe acquisition chain to the radiation, it is necessary to place the calibrated sensor close to 
the sensor to be calibrated (Figure 1, left). To test good repeatability of the device, measurements 
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To verify the accuracy of PARADe measurements, a relative error (RE) profile was carried out. 
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This profile is a graph showing RE (defined by Eq. 1) as a function of the actual PAR. 

Relative error = ((PARdevice –PARref))/PARref*100                                                                 (1)

With two different PAR values: the amount of PARref which is determined using the calibrated 
sensor connected to the CR1000 data logger and that of the PARdevice obtained by the calibration 
equation of PARADe.
The graph in Figure 1 (right) represents this relative error profile of the PARADe device. On 
average, the portable device with the ARDUINO card has a relative error of -1.68%.  In this 
figure, the strong errors observed at low PAR values are ultimately inherent due to the shape 
of the sensor and do not defeat the acquisition chain. Following Standard ISO 9847, it emerges 
that in practice the radiation measurements for which the solar altitude angle is less than 20 ° 
(at sunrise sun and sunset) are excluded. It is due to the poor quality of response to the radiation 
of this type of rectilinear sensor (Standard ISO 9847: 1992). The calibration curve can therefore 
be kept.
Compared to other portable devices available (Barnard et al., 2014), the PARADe device appears 
to be as effective or even superior for high PAR radiation. These results make its use operational. 
These PAR measurements can then be used as input parameters for ecophysiological models. In 
perspective, a smartphone, a digital tablet or a laptop could be the interface with the device via 
a Bluetooth or Wi-Fi connection.
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OPPORTUNITIES FOR MORE PRECISE WEED MANAGEMENT IN FIELDS OF 
LOWLAND RICE IN SOUTH-EASTERN NIGERIA.
Ukwoma-Eke, O., Murdoch, A. J.
School of Agriculture, Policy and Development, University of Reading, Reading, U.K. 

Rice is the most important food in Nigeria, but hunger is still widespread. Weed infestations 
are a major constraint to raising rice yields. Farmers struggle to rescue their harvest from some 
of the worlds’ worst weeds using hand weeding and the uniform application of herbicides 
across whole fields. If the weeds accumulate in patches, then precision agriculture could be 
implemented as site-specific weed management (SSWM). In the absence of technology, this 
study explores the introduction of SSWM by adapting traditional knowledge and practices to 
enable farmers to target interventions more precisely to weed patches. 

The study area was Ayamelum Local Government Area of Anambra State, SE Nigeria. The 
major crop in the area is rain-fed rice, technology is low, most fields are less than a hectare and 
are cropped once in a season. Questionnaires were administered to 281 lowland rice farmers in 
the study area. The responses from the questionnaire were summarized using IBM SPSS Statistics 
24.

In addition, two lowland rice fields were sampled as an independent verification of respondents’ 
claims. These fields were chosen randomly from among the fields belonging to farmers who 
had indicated that the weeds in their fields were spatially-variably distributed. Within each 
field, flooding depth and populations of two weeds, Nymphaea maculata Schumach & Thonn 
and Echinochloa spp., were assessed. An 8 m regular grid with some nested samples at 2 m 
intervals provided 90 96 sampling sites per field, in which weeds were counted a 63.2 cm 
square quadrat. Variograms were computed using Matheron’s method of moments (Mahmood 
& Murdoch, 2017). Flooding depth was mapped by ordinary kriging, but the inverse distance 
weighting method (Oliver & Webster, 2014) was used for weed mapping since both weeds were 
absent in up to 60% of the quadrats. All maps were prepared with ArcGIS software edition 10.4. 
Correlations and experimental variograms were computed using GenStat 18th edition.

In describing the weed distribution in their fields, 71% of the respondents indicated that the weeds 
were spatially-variably distributed and 69% of these respondents associated the patchiness of 
weeds with differences in flooding depth. Most respondents stated that they observed higher 
densities of N. maculata in flooded portions of their fields while Echinochloa spp. often 
accumulated in the drier parts. Visually, the maps of weed density and flooding depths in two 
fields appear to corroborate these claims (Figure 1). The variograms confirmed that there was 
significant spatially-correlated variation of the weeds and flooding in both fields even though 
the fields were <1 ha. The variation in the flooding depth reached a maximum (sill variance) at 
50 and 170 m in fields one and two, respectively (compare Figure 1). Although some parts of 
each field were dry at the time of sampling, about 50% of both fields was flooded to a depth of 
>5 cm. The maximum measured flooding depths were 25.6 and 30 cm in fields one and two, 
respectively. The highest densities of N. maculata, i.e., 11 and 31 plants m-2 in fields one and 
two respectively, were observed at flooding depths of 20-30 cm. This species only occurred 
in areas with >6 cm flooding depth and correlated positively with increasing flooding depth  
(R = + 0.6 to + 0.7) (Figure 1). By contrast, Echinochloa spp. appeared to aggregate in drier 
parts of both fields, and there was a negative correlation of (R = – 0.4) between Echinochloa 
spp. populations and increasing flooding 
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Figure 1: Maps of the distribution of N. maculata (left), Echinochloa spp. (right) and flooding 
depth (centre) across two lowland rice fields in SE Nigeria. 

R refers to the Pearson’s correlation coefficient between flooding depth and weed population. 
Note that the colour scale differs on each map. 

 
depth in both fields (Figure 1). The highest population of Echinochloa spp., 19 plants m-2 in 
field one, occurred in a part of the field with <3 cm of flooding. 
 
In field two, the greatest density of Echinochloa spp. was 8 plants m-2 and this was observed in 
a completely dry part of the field. The maps of both fields show a quick decline in Echinochloa 
spp. populations as the flooding depth exceeds 6 cm (Figure 1). 
 
The farmers were clearly aware that flooding was influencing the weed distribution in their 
fields. Though the fields are small, the data indicates that the weeds in individual fields could 
be spatially variably distributed, perhaps especially where the fields were not level and the 
depth and duration of flooding varies. More precise interventions might, therefore, achieve 
satisfactory weed control, reduce herbicide and labour costs and minimise any adverse 
environmental impacts of herbicide use. Interestingly, some farmers were adopting SSWM 
immediately following the study. Many farmers, who had participated in the survey, 
subsequently applied different types of herbicides in different parts of their fields based on the 
weed species and levels of infestation they observed. Others changed their negotiations with 
the labourers for hand weeding, from the traditional whole-field basis to a weed-patch basis. 
 
In future, farmers could demarcate weed management zones based on flooding depth and 
expected weed infestations. Zones could also be bunded to flood to desired levels. SSWM in 
this way would allow different doses or types of herbicide and varying hand weeding schedules. 
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Figure 1: Maps of the distribution of N. maculata (left), Echinochloa spp. (right) and flooding 
depth (centre) across two lowland rice fields in SE Nigeria.

R refers to the Pearson’s correlation coefficient between flooding depth and weed population.
Note that the colour scale differs on each map.

depth in both fields (Figure 1). The highest population of Echinochloa spp., 19 plants m-2 in 
field one, occurred in a part of the field with <3 cm of flooding.

In field two, the greatest density of Echinochloa spp. was 8 plants m-2 and this was observed in 
a completely dry part of the field. The maps of both fields show a quick decline in Echinochloa 
spp. populations as the flooding depth exceeds 6 cm (Figure 1).

The farmers were clearly aware that flooding was influencing the weed distribution in their 
fields. Though the fields are small, the data indicates that the weeds in individual fields could be 
spatially variably distributed, perhaps especially where the fields were not level and the depth 
and duration of flooding varies. More precise interventions might, therefore, achieve satisfactory 
weed control, reduce herbicide and labour costs and minimise any adverse environmental impacts 
of herbicide use. Interestingly, some farmers were adopting SSWM immediately following the 
study. Many farmers, who had participated in the survey, subsequently applied different types 
of herbicides in different parts of their fields based on the weed species and levels of infestation 
they observed. Others changed their negotiations with the labourers for hand weeding, from the 
traditional whole-field basis to a weed-patch basis.

In future, farmers could demarcate weed management zones based on flooding depth and 
expected weed infestations. Zones could also be bunded to flood to desired levels. SSWM in 
this way would allow different doses or types of herbicide and varying hand weeding schedules.

Mahmood, S. A. and Murdoch, A. J. 2017. Within-field variations in sugar beet yield and  
 quality and their correlation with environmental variables in the East of England.  
 European Journal of Agronomy 89 75-87. 
Oliver, M. and Webster, R. 2014. A tutorial guide to geostatistics: Computing and modelling  
 variograms and kriging. Catena 113 56-69. 
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ENCOURAGING TECHNOLOGY TAKE-OFF WITH FARMER CHAMPIONS AND 
STUDENT AMBASSADORS 
G. Rose1, A.J. Murdoch1, D.S. Paraforos2, T. Pavlenko2, J. Draper3, L.M. Battaglini4,  
P. Cornale4, M. Renna5, N. Scollan6, I. Marshall6, R. Negrini7, M. Favoro7 and I. Pascarella7

1University of Reading, School of Agriculture, Policy and Development, Earley Gate, PO 
Box 237, RG6 6EU, UK, 2Hohenheim University, Agricultural Engineering, Garbenstrasse 
9, 70599 Stuttgart, Germany, 3Anglo Beef Processors UK (ABP UK), 6290 Bishops Court, 
Birmingham Business Park, West Midlands B37 7YB, UK, 4,5Università degli Studi di Torino, 
(4)DISAFA and (5)DSV, largo Paolo Braccini, 2 , 10095 Grugliasco Turin, Italy, 6Queen’s 
University of Belfast, Biological Sciences, Lisburn Road, Belfast BT9 7BL, UK, 7Associazione 
Italiana Allevatori - AIA, Via G. Tomassetti, 9, 00161 - Roma, Italy

Focus on Farmers was funded by EIT Food as three projects, one in each of 2018, 2019 and 
2020. All three projects engaged farmers and encouraged technology adoption by arable and 
livestock farmers in the UK, Italy and Germany. Engaging primary producers and the students 
were key elements in introducing new technologies and promoting their adoption. Sector-
specific engagement activities were key to success and ensured the activities were tailored to 
the audience whether dairy farmers producing milk for Italian PDO cheese producers, dealers of 
John Deere machinery in Germany or beef farmers in the UK. Student ambassadors and farmer 
champions, therefore, played key roles in the project. The students brought new knowledge and 
skills with lots of ideas and enthusiasm. Farmer champions and technology ambassadors help 
to nudge ‘laggards’ towards technology adoption. By their example, other farmers could see 
the benefits of technology adoption and learn from others. Farmers gained confidence through 
visiting their peers and seeing and discussing how technology was implemented. In 2020 with 
Covid-19, virtual farm walks and webinars with farmer champions and researchers were highly 
effective way of exposing, for examples, beef farmers to precision approaches such as rotational 
paddock grazing. Farmers thus learned from the success of others supported by specialists who 
ensure the science behind recommendations. A Farmer Technology Framework was therefore 
proposed in 2019 and has been implemented in 2020.

In this framework, the industry partners identify suitable farmer champions (also technology 
champions). These champions would ideally be early-adopters of precision agricultural 
technology and demonstrate a passion for adapting technology with a history of successful 
adoption. They also demonstrated excellent interpersonal skills and were committed to 
communicating the benefits of technology to their peers. The industry partners and champions 
identified engagement opportunities, which are likely to be dependent on industry. For example, 
ABP organised a farm visit and, with Covid-19, a series of webinars for beef farmers in Northern 
Ireland and England in association with Queen’s University and the University of Reading. AIA 
in Italy delivered a report to 12000 dairy farmers with whom they have links. The industry 
partners advertised and helped to recruit farmers to attend the engagement activities. The 
champions, in collaboration with the industry partner, hosted the event, focusing on highlighting 
the use of technology and the benefits to the farming enterprise of the chosen technology. 
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In order to encourage greater adoption, a farmer-to-farmer approach with farmer champions 
was important to overcome reluctance by farmers to adopt innovation on their farms, 
especially when related to sensitive topics such as animal welfare. Moreover, to foster 
laggard-farmers to adopt innovations, tools and documents need to be customized to take 
account of variables such as herd size and genetic potential, existing farm automation and the 
education level of farmers 
. 
 

 
Farmers were engaged with farmer champions and student ambassadors to appropriate 
technologies in a variety of events (e.g. Figure 1). Despite a very modest budget, the project 
reached 6,252 farmers and students in a range of events in 2019.  The live webinars in 2020 
reached a total of 2,072 farmers with an additional 1,503 viewers accessing the YouTube 
recording.  In addition, the Facebook reach totalled 33,129.  
 
Technology helps address major issues from improving productivity on farm through to 
reducing greenhouse gas emissions from farming systems to improving animal welfare and 
reducing fraud. To advance this area further, it is essential to have multi-disciplinary teams 
working together from producers, processors to consumers, supported by technology 
providers/developers, agronomists and scientists. It was also evident that there is much work 
and a huge appetite among farmers for education in uses of outputs from digital technologies, 
to help improve their businesses. There are also issues associated with lack of robust 
broadband/internet access in rural areas to help advance application of the technology. 
However, one benefit of Covid-19 has been the very successful use of webinars to reach large 
numbers of farmers.  
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NUDGING ARABLE FARMERS TOWARDS GREATER ADOPTION OF PRECISION 
AGRICULTURE 
Antognelli, S.1, Murdoch, A.2, Guidotti, D.1, Ranieri, E.1, Ahrholz, T.3, Tranter, R.2, Engel, T.3, 
Mahmood, S.2, Paraforos, D.S.4 

1Agricolus srl, via Settevalli, 320, 06129 Perugia (Italy), 2School of Agriculture, Policy and 
Development, The University of Reading, Earley Gate, PO Box 237, Reading RG6 6AR, U.K., 
3 John Deere GmbH & Co. KG, European Technology Innovation Center, Straßburger Allee 3, 
67657 Kaiserslautern, Germany, 4 University of Hohenheim, Institute of Agricultural 
Engineering, Technology in Crop Production (440d), Garbenstr. 9, D-70599, Stuttgart, 
Germany 
 
Farmers increasingly generate large amounts of data for their fields but often the way to use the 
data is unclear. While data can be viewed on its own, the LINKDAPA software platform aims 
to create innovative predictive synergies by linking historical and current data for winter wheat 
crops. In this way, farmers would have the instruments to obtain most of the informative 
potential from their data. LINKDAPA (Linking multi-source Data for Adoption of Precision 
Agriculture) is being co-funded by the EU-supported EIT Food. The project is nudging farmers 
towards greater adoption of precision agriculture first by involving them in developing novel 
ways of looking at their “big” data and in developing the platform and secondly, by emphasising 
financial sustainability – predicting the probability that a higher profit could be achieved by 
adopting PA.  
Eight key farmers in Italy, Germany and the UK identified aspects of PA of greatest interest 
and indicated the clarity, usefulness and attractiveness of a ‘mock-up’ platform. The mock-up 
platform included different sections with different features. The first section is the entry page, 
which reports synthetic information about each field status, and makes different information 
from different fields easy to compare. The entry page includes a table, in which each row is 
dedicated to a field. The columns report different synthetic information, including the crop and 
variety planted on the fields, the average NDVI from Sentinel 2 of the last available date, the 
average yield (from yield map uploaded in the system), the average protein content (from 
protein maps uploaded in the system), and the list of available maps for each field. 
 

 
Figure 1 example of the summary information for each cereal field 

 
The second section is the detail page of each single field that reports more specific information. 
The user can navigate the map of the winter cereals fields of the farm, visualizing crop or 
variety, yield maps, protein maps and the last available NDVI. This section also allows the user 
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potential from their data. LINKDAPA (Linking multi-source Data for Adoption of Precision 
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towards greater adoption of precision agriculture first by involving them in developing novel 
ways of looking at their “big” data and in developing the platform and secondly, by emphasising 
financial sustainability – predicting the probability that a higher profit could be achieved by 
adopting PA. 
Eight key farmers in Italy, Germany and the UK identified aspects of PA of greatest interest 
and indicated the clarity, usefulness and attractiveness of a ‘mock-up’ platform. The mock-up 
platform included different sections with different features. The first section is the entry page, 
which reports synthetic information about each field status, and make different information of 
different fields easy to compare. The entry page includes a table, in which each row is dedicated 
to a field. The columns report different synthetic information, including the crop and variety 
planted on the fields, the average NDVI from Sentinel 2 of the last available date, the average 
yield (from yield map uploaded in the system), the average protein content (from protein maps 
uploaded in the system), and the list of available maps for each field.

 

Figure 1: example of the summary information for each cereal field
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The second section is the detail page of each single field, that reports more specific information. 
The user can navigate the map of the winter cereals fields of the farm, visualizing crop or 
variety, yield maps, protein maps, and the last available NDVI. This section also allows the user 
to upload and visualize yield or protein maps collected on field, to visualize the yield and protein 
prediction, and to create his own prescription map for variable rate fertilizer applications for the 
selected field. Prescription maps meet the need to customize fertilizer rates for each area of the 
field on a spatially-variable basis.
Prescription maps support the optimization of the fertilizer dose, prescribing the predicted 
optimum variable rate fertilizer amount in each part of the field.
In order of importance, farmers expressed their interest in: 1. Prescription map for variable rate 
applications (VRA) of N in spring 2. A means of linking all historical farm data for single field 3. 
View recent satellite vegetation map 4. Prescription map for VRA of seed 5. Maps of each field 
during the growing season predicting a) wheat yield, moisture, and protein; b) the probability 
that adopting a PA option would increase revenue and profit compared to a uniform treatment; 
c) the probability that grain yield, moisture and protein would exceed farmer-specified targets. 
Novel field zoning options were also discussed with the farmers. These options includes:  ‘don’t 
apply many inputs in zone B as it won’t yield well; spend more in zone A, which is likely to 
yield >10 t/ha’. Zonal harvesting have also been presented as an alternative opportunity, as it 
become possible in the last years, thanks to new machineries and technologies. For example, 
‘zone D is likely to yield high protein grain but zone C is not’. These discussions with farmers 
were carried on to identify their potential interest on them, and to provide ideas for a data 
centric, new approach to cereal farming.
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The Hungarian organisers are pleased to welcome the ECPA conference to Budapest, even in 
this very difficult pandemic situation. The conference is organised in hybrid form, the presenters 
and participants can join the event online or in person. With this solution we can reach 400 
participants.

The aim of the Ministry of Agriculture is to lead the Hungarian farmers into the digitized 
era of agriculture. A scientific conference is always the best way to promote development. 
The conference is focusing on the new scientific results and adoption of innovative precision 
agriculture technologies and solutions.

Hungarian Society of Precision Agriculture
(Magyarországi Precíziós Gazdálkodási Egyesület)
1149 Budapest Angol Street 34.

For more information, please email: ecpa2021@ecpa2021.hu
Website: https://www.ecpa2021.hu/
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